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This article surveys the research of the Evolvable Systems Group at NASA Ames Re- 
search Center. Over the past few years, our group has developed the ability to use evo- 
lutionary algorithms in a variety of NASA applications ranging from spacecraft antenna 
design, fault tolerance for programmable logic chips, atomic force field parameter fitting, 
analog circuit design, and earth observing satellite scheduling. In some of these applica- 
tions, evolutionary algorithms match or improve on human performance. 

Nomenclature 

EA Evolutionary Algorithm 
GA Genetic Algorithm 
ST5 Space Technology 5 
NEC Numerical Electromagnetics Code 

I. Introduction 

11. Spacecraft Antenna Design 

In this section we summarize a proof-of-concept study" that investigated the optmization of the deployed 
antenna on the Mars Odyssey spacecraft. 

Automated antenna synthesis via evolutionary design has recently garnered much attention in the research 
l i terat~re. '~ Evolutionary algorithms show promise because, among search algorithms, they are able to 
effectively search large, unknown design spaces. 

NASA's Mars Odyssey spacecraft is currentlyin Martian orbit. Onboard the spacecraft is a quachifilar 
helical antenna that provides telecommunications in the UHF band with landed assets, such as robotic rovers. 
This antema can be seen in Fig. 1. Each helix is driven by the same signal which is phase-delayed in 90" 
increments. A small ground plane is provided at the base. It is designed to operate in the frequency band 
of 400-438 MHz. 

Based on encouraging previous results in automated antenna design using evolutionary search, we wanted 
to see whether such techniques could improve upon Mars Odyssey antenna design. Specifically, a coevolu- 
tionary genetic algorithm is applied to optimize the gain and size of the quadrifilar helical antenna. 

The optimization was performed in-situ - in the presence of a neighboring spacecraft s t r u ~ t u r e . ~  On the 
spacecraft, a large aluminum fuel tank is adjacent to the antenna. Since this fuel tank can dramatically 
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affect the antema’s performance. we leave It to Ehe evolutionary process to see if iz can eq lo i t  the fuel 
tank‘s properties advantageously. 

Optimizing in the presence of surrounding structures would be quite difficuit for human antenna desigaers, 
and thus the actual antenna was designed for free space (with a small ground plane). In fact, when flying 
on the spacecraft, surrounding structures that are moveable (e.g.. solar panels) may be moved during the 
mission in order to improve the antenna’s performance. 

Figure 1. Photograph of the quadrifilar helical UHF antenna deployed on the Mars Odyssey spacecraft 

A. Experiments  and Resul t s  

E.xperiments were set up as follows. The Numerical Electromagnetics Code program was used to evaluate all 
antenna designs. We used a parallel master/slave generational genetic algorithm with a population size of 
6000. One point crossover across byte boundaries was used at a rate of 80%. Mutation was uniform across 
bytes at  a rate of 1%. Runs were executed on 32-node and 6Cnode Beowulf computing clusters. 

The wire geometry encoded by each individual chromosome was first translated into a NEC input deck, 
which was subsequently sent to the NEC simulator. The segment size for all elements was fixed at O . l X ,  
where X was the wavelength corresponding to 235 MHz. 

A coarse model of the neighboring fuel tank was used in the simulations. Its size and position was 
calculated based on engineering drawings of the spacecraft. To compare our results to the spacecraft antenna, 
we modeled that antenna with the best data we had at the time of this writing. 

A coevolutionary genetic algorithm was applied to the quadrifilar helical antenna optimizat.ion. Two 
populations are used: one consisting of ant.enna designs, and one consisting of target vectors. The funda- 
mextal idea is that the t,arget vectors encapsulate level-of-difficuity. Then, under the control of the genetic 
algorithm, the target vectors evolve from easy to diflicult. based on the level of proficiency of the antenna 
population. 

Each target vector consists of a set of objectives that must be met in order for a target vector to be 
”solved.” A target vector consisting of two values: the average gain (in dB), VSWR, and antenna volume. 
.4 target vector was considered to be solved by a given antenna if the antenna exceeds the performance 
thresholds of all target. 

Values for target gain ranged between -50 dB (easy) and 8 dB (difficult). Target VSWR d u e s  ranged 
between 100 (easy) and 20 (difficult). Target antenna volumes ranged from 100,000 cm3 (easy) to 100 cm3 
(difficult). Target vectors are represented as a list of floating point values that are mutated individually by 
randomly adding or subtracting a small amount (5% of the largest legal value). Single point crossover was 
used: and crossover points were chosen between the values. 

Antennas are rewarded for solving difficult target vectors. The most diffcult target vector is defined to 
be the target vector that only one antenna can soh-e. Such a target vector garners the highest fitness score. 
Target vectors that are unsoivabie. or are  very e z y  to solve by the current antema population, are given 
low fitness scores. 

Fitness was expressed as a cost function to be minimized. The calculation was as follows: 
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where: GL = lowest gain of all frequencies measured at 8 = 0" and $J = 0". V,  = VSWR at the i th frequency. 
Lacking from this calculation was a term involving sidelobe/backlobe attenuation. We chose not include such 
a term because we reasoned that as the mainlobe gam increased, the sidelobes/backlobes would decrease in 
size. 

A set of five runs were executed using the algorithm described above. Only one of the runs found an 
antenna design that exceed that benchmark antenna. Fig. 2 shows the gain plots for both the evolved and 
actual Mars UHF antennas. Fig. 3 show the antennas, structures, and rahation patterns of actual Mars 
Odyssey UHF and evolved antenna. The evolved antenna measures 6cm x 6cm x 16cm which approximately 
four times as small volumewise as the benchmark (roughly lOcm x lOcm x 25cm). At 400 MHz. the average 
gain of the evolved antenna was 3.7'7 dB and 1.95 for the benchmark antenna At 438 MHz, the average gain 
of the ex-olved antenna was 2.82 dB and 1.90 for the benchmark antenna. This represent a 93% improvement 
at 400 MHz and a 48% improvement at 438 M H z  in the average gain. 

D 

Figure 2. Gain plots for 400 MHZ (leR) and 438 M H z  (right). In each case, the evolved antenna maintains a 
higher gain than the actual Mars Odyssey antenna. Plots take into account circular polarization. 

Figure 3. 
tank in the lower right. 

Radiation pattern of the evolved antenna. The antenna can be seen in the upper left and the fuel 

B. Discussion 

An improved version of the quadrifilar antenna currently flying on Mars Odyssey was presented. The 
evolutionary algorithm allowed the antenna to be designed in the presence of the surrounding structure, 
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whereas the human-designed antenna was designed for free-space. Results showed a 93% improvement at 
400 MHz and a 48% improvement at 438 M H z  in the average gain. The evolved antenna was also one- 
fourth the size of the actual antenna on the spacecraft, which is important because of the scarcity of area 
on spacecraft. 

For human antenna designers, designing an antenna to be synergistic with its surrounding structures is 
typically a daunting task. The results from the quadrfilar helical antenna provide encouraging evidence that 
evolution can exploit those structures to give increased antenna performance. 

111. Atomic Force Field Parameters 

In this section, we summarize work on automatically finding molecular force field  parameter^.^ 
Accurate molecular dynamics simulation of reactive systems containing many atomic species is important 

for the conceptualization, design and testing of novel nanoscale materials, molecular electronic devices, nano- 
integrated systems and applications, and a broad range of physical and chemical phenomenon in other areas 
as well. The physical and chemical characterization of carbon nanotubes and fullerenes, design and operations 
of molecular gears, hinges, three-way junctions, and bearings have also utilized simulations using reactive 
dynamics of 2- or %atomic species containing systems.2 However, as the system and device sizes continue 
to shrink and composition becomes more multi-species, there is an urgent need for developing good quality 
reactive atomic force field functions that are not currently available. 

The primary impediment to determining the potentials is simulation speed. Simulation at the quantum- 
mechanical level is prohibitively slow for more than a few hundred atoms. However, millions of atoms 
can be simulated using classical potentials, albeit with less accuracy, and this is the approach taken here. 
Unfortunately, reactive multi-species potentials are only a d a b l e  for a few atomic species. F’urthermore, 
developing reactive multi-species potentials is difficult, time consuming, tedious, failure prone and, thus, 
rarely attempted. 

There are two parts to  developing atomic force field functions. First, finding an analytic functional form 
that reflects the physical and chemical nature of the atomic species under consideration, and second, fitting 
parameters in a complex multi-dimensional parameter space based on the data available fiom the experiments 
or more accurate quantum mechanical calculations. In an ideal case, the cycle of choosing a functional form 
and parameterization of the force field function should be iterated until a reasonable convergence on the 
choice of inter-atomic potentials is achieved. Doing this for multi-component systems is extremely tedious 
because the parameter space that needs to  be investigated is large and may be coupled in a complex way. 
The tedium has deterred regular successful attempts in developing 

A. EvoIutionary Algorithm 

JavaGenes6 is a steady state tournament selection genetic algorithm. The tournament size is usually two. In 
tournament selection each parent is chosen by randomly selecting two individuals from the population and 
choosing the fittest to be the parent. After crossover or mutation produces a child, individuals to replace 
are chosen by an anti-tournament of size two. An anti-tournament chooses the least fit individual. 

We represent force field parameters as a ragged two-dimensional array of double precision floating point 
numbers. The first dimension represents the two- or three-body terms of the potential function, and the 
ragged second dimension holds the varying number of parameters depending on the number of bodies. Each 
parameter is assigned a set of limits within which it is allowed to evolve. The limiting d u e s  of the parameters 
are chosen from the physical interpretation of the contribution of the parameter to the force field function 
and are randomized among jobs. 

Evolution is guided by a fitness function. The fitness function must provide a fitness for any possible 
individual, no matter how bad, and distinguish between any two individuals, no matter how close they 
are. The fitness function for this work compares energies and forces computed for a given set of atomic 
conformations using the evolving parameters with externally supplied energies and forces. Conformations 
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for both near equilibrium and far from equilibrium configurations for very hgh and low energies were used 
In general GA is not guaranteed to find a unique or even a satisfactory solution, but often works well 

in practice. JavaGenes uses many “GA parameters” (mutation rate, tournament size, etc.) that can affect 
performance and results of the search procedure. Choosing GA parameters is a non-trivial problem. We 
solve this by randomizing the choice of GA parameters in appropriate ranges in many parallel GA jobs. This 
eliminates a tedious human-directed search for good GA-parameters. Initially, 30-100 single-workstation GA 
runs with identical GA-parameters (except the random number seed) for each job were run with populations 
varying between 1000-3000. The GA-parameters that worked for one search (say, Si dimers in the fitness 
function) would fa in a similar search for a cUTerent system (say, larger Si clusters). The alternate technique 
of using a thousand trajectories with randomized GA-parameters and smaller populations (100-200) worked 
very well for all the systems attempted. 

Using the evolutionary algorithm described above to automate force-field parameterization, we were 
able to reproduce the Stillinnger-Weber parameterization for Si,14 and generate parameters new force field 
functions for Si and Ge for a variety of nanotechnology applications. The new Si parameters matched the 
energetics of small Si clusters much better than Stillinger-Weber, and the new Ge parameters are the first 
available for the Stillinger-Weber functional form. 

N. Fault Recovery on FPGAs 

Most evolutionary approaches to fault recovery in FPGAs focus on evolving alternative logic configura- 
tions as opposed to  evolving the intra-cell routing. Since the majority of transistors in a typical FPGA are 
dedicated to interconnect, nearly 80% according to  one estimate, evolutionary fault-recovery systems should 
benefit by accommodating routing. In this section, we describe an evolutionary fault-recovery system em- 
ploying a genetic representation that takes into account both logic and routing configurations. Experiments 
were run using a software model of the Xilinx Virtex FPGA. We report that using four Virtex combinational 
logic blocks, we were able to evolve a 100% accurate quadrature decoder finite state machine in the presence 
of a stuck-at-zero fault. 

A. Approach 

Bitstring representations are a natural choice for FPGA applications, and many times the raw configuration 
string can be used as the representation. In our case, we chose a bitstring representation mainly out of 
convenience in programming. Since we knew that only a handful of CLBs would be evolved, our bitstrings 
would be at most 1000 bits long. We acknowledge that this approach would likely suffer as more CLBs were 
utilized and the corresponding bitstring enlarged to thousands of bits. 

The representation is shown in Figure 4. This scheme is comprised of multiple 128-bit fields, one for 
each CLB. Within each CLB field are a number of subfields that specify each of the LUT bits and remote 
connections. There are 16 bits that specify the contents of each LUT. Each LUT has four inputs, and since 
each of these inputs can be connected to  other LUT outputs, the remote CLB/LUT requires addressing 
bits. Since our system will be comprised of four CLBs, we need only two bits to  spec* the remote CLB, 
and another two bits to spec* the particular LUT within the CLB. This pattern of subfields continues for 
each LUT until all the LUTs in the CLB are accounted for. An illustration of the CLBs, LUTs and sample 
routing is shown in Figure 5. 

B. Experiments and Results 

The quadrature decoder’ was selected as an initial case study for testing and refinement of our evolutionary 
recovery strategy. It represents a NASA application of manageable size that is appropriate for tuning of the 
GA. Quadrature decoders provide a means of counting objects passed back and forth through two beams of 
light, or alternatively determining the angular displacement and direction of rotation of an encoder wheel 
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Figure 4. Genetic representation used showing logic fields and routing fields. 
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Figure 5. Example of routing among CLBs. 
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turning about its axis. -4 quadrature decoder that determines the direction of rotation 
in Figure 6. 
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Figure 6. Rotating shaft application for a quadrature decoder. 

C. Experimental Setup and Results 

The software system used is depicted in Figure 7. The entire system is implemented in software. The GA 
so,kware is ECJ, a Java-based evolutionary computation and genetic programming system by Sean Luke of 
George Mason University. ECJ is augmented by our code for tasks like decoding individuals and calculating 
fitness. The GA sits on top of Xilinx Corporation’s JBits software,’ a set of Java classes which provide 
an Application Programming Interface to  access the Xilinx FPGA bitstream. Xilinx’s Virtex DS software, 
which simulates the operation of Virtex devices, is used to test candidate solutions. Borland’s JBuilder Java 
environment is used for development and to run the system, though Sun Microsystem’s Java virtual machine 
is used beneath JBuilder. 

To evaluate the fitness of an individual, an input stream of 500 bit pairs is used. These inputs attempt 
to Wiy exercise the evolving finite state machines. The output stream consists of 510 bits sampled across 
ail four CLBs. Ten bits are added to allow for delays in the evolved FSMs This gives ten output stream 
windows of length 500, with each output stream shifted by 1-bit from the next. Sampling across all the 
CLBs allows the GA to maximum flexibility in building the FSM. Thus, fitness is expressed as: 

F = ,  max (CLB:) 
n=1,1;J=0,9 
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\ ECJ + Our Code 
4-1 VirtexDS i 

1 JBuilder simulated fault 

Figure 7. Software system for FPGA fault recovery. 

where CLB; represents the number of correct output bits from the ith CLB shifted by j clock ticks. The 
fitness is simply the highest number of correct output bits seen across all of the CLBs and across the ten 
output windows. The best score is 500, and the worst score is 0. 

Ten experimental runs were conducted using smaller input bitstreams of 100 bit pairs. These were found 
to evolve finite state machines that were tuned t o  the test cases, but not robust when interrogated with 
out of sample input test streams. Two runs were conducted using 500 bit pairs and one these runs was 
able to evolve a 100% accurate quadrature decoder finite state machine in the presence of an induced fault. 
The best evolved configuration was found in generation 623 and is shown in Figure 8. Two of the 16 LUTs 
went unused which is not surprising given that the FSM can be implemented with about 10 LUTs. The 
GA exploits the induced fault to its advantage because if you remove the fault in the evolved solution, it 
no longer functions correctly - it achieves an accuracy of only 93.8%. Also, note that the input LUTs had 
mostly zeros in their tables. This is because we fix most of those bits to zero in the genome since they do not 
affect the LUT’s function. However, the “corner” bits of each of those input LUTs are involved in processing 
the input, and therefore, are evolved. 

At the time of this writing, we have started running similar experiments using the actual hardware FPGA 
in the evolutionary loop (see Figure 9). The initial runs look promising. We have been able to  evolve perfect 
quadrature decoders in the presence of 20 injected stuck-at faults in less than 5 minutes on a board clocked 
at 1 MHz.  Even more encouraging is that we may be able to complete an entire evolutionary run in less 
than a minute. Our current system spends 90% of its time in software routing operations which we believe 
can be drastically reduced. On the hardware side, we have the ability to  clock our board at much higher 
clock frequencies. 

V. Analog Circuit Design 

In this section we outline a method of evolving analog electronic circuits using a linear representation 
and a simple unfolding technique.“ While this representation excludes a large number of circuit topologies, 
it is capable of constructing many of the useful topologies seen in hand-designed circuits. Our system allows 
circuit size, circuit topology, and device values’ to be evolved. Using a parallel genetic algorithm we present 
initial results of our system as applied to two analog filter design problems. The modest computational 
requirements of our system suggest that the ability to evolve complex analog circuit representations in 
software is becoming more approachable on a smgle engineering workstation. 

A. Approach 

Circuits are represented in the genetic algorithm as a list of bytecodes which are interpreted during a simple 
unfolding process. A fixed number of bytecodes represent each component as follows: the first is the opcode, 
and the next three represent the component value. Component value encoding is discussed Grst. 
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Figure 8. Evolved configuration showing routing, LUT contents, and simulated fault. Inputs are on the lines 
labeled MSB and LSB, referring to the least/most significant bit of the input. Wires that are shown crossing 
perpendicularly (eg, +) are unconnected - only wires that have T junctions are connected. 

Using three bytes allows the component values to take on one of 2563 values, a sufficiently finegrained 
resolution. The raw nuuerical value of these bytes was then scaled into a reasonable range, depending on 
the type of component. Resistor values were scaled sipoidaily between 1 and lOOK ohms using 1/(1 + 
exp(-1.4(102 - 8))) so that roughly 75% of the resistor values were biased to be less than 10K ohms. 
Capacitor values were scaled between approximately 10 p F  and 200 pF and inductors between roughly 
0.1 m€I and 1.5 H. 

The opcode is an instruction to execute during circuit construction. In the current design of our system, 
we use only “component placement“ opcodes w-hich accomplish placement of resistors. capacitors, and in- 
ductors. The five basic opcode types are: s-move-to-new, z-cast-to-previous, 2-cast-to-ground, z-cast-input, 
2-cast-to-output, where z can be replaced by R (resistor): C (capacitor), or L (inductor). In a circuit design 
problem involving only inductors and capacitors (an LC circuit), ten opcodes would be available to construct 
circuits (five for capacitors and five for inductors). 

The circuit is constructed between fixed input and output terminals as shown in Fig. 10. An ideal AC 
input voltage source vs is connected to ground and to a source resistor R,. The circuit’s output voltage 
taken across a load resistor RI. 
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Figure 9. FPGA Fault Recovery demonstration system. 
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Figure 10. 
voltage source, R, is the source resistance, Ri is the load resistance). 

Artificially evolved circuit is located between fixed input and output terminals (zls is an ideal ac 
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To construct the circuit, a “current node” register (abbreviated CN; kith “current” used in the sense of 
present, not electrical current) is used and initialized to the circuit’s input node. The unfolding process then 
proceeds to interpret each opcode and associated component values, updating the CN register if necessary. 
The s-move-to-new opcode places one end of component s at the current node (specified by the CN register) 
and the other at a newly-created node. The CN register is then assigned the value of the newly-created 
node. The lLx-cast-to-” opcodes place one end of component x at the current node and the other at either 
the ground, input, output, or previously-created node. After executing these opcodes, the CN register 
remains unchanged. The meanings of each opcode are summarized in Table 1. All five opcode types place 
components into the circuit, dthough they could be designed to  do other actions as well, e.g., move without 
placement. 

I Opcode 1 Destination Node I CN Register 1 
I 2-mwetenew I new-node I new-node I 
I z-cast-to-previous 1 previous node I unchanged I 

z-cast-to-ground I groundnode I unchanged 
2-cast-to-input I inDut node I unchanged 
z-cast-to-output I output node I unchanged I 

Table 1. Si-- of opcode types used in current system. I denotes a resistor, capacitor, or inductor. 

The list of bytecodes is a variable-length list (the length is evolved by the GA). Thus, circuits of various 
sizes are constructed. When the decoding process reaches the last component to  place in the circuit, we 
arbitrarily chose to have the last node (value in CN) connected to the output terminal by a wire. By doing 
so, we eliminate unconnected branches. 

B. Experiments and Results 

The evolved circuit we present below is a low-pass filter. A low-pass filter is a circuit the allows low frequencies 
to pass through it, but stops high frequencies from doing so. In other words, it ‘Tifilters out” frequencies above 
a specified frequency. The unshaded area in Fig. 11 depicts the region of operation for low-pass .filters. Below 
the frequency f, the input signal is passed to the output, potentially reduced (attenuated) by K p  decibels 
(dB). This region is known as the passband. Above the frequency fs, the input signal is markedly decreased 
by K,  decibels. As labeled, this region is called the stopband. Between the passband and stopband the 
frequency response curve transitions from low to high attenuation. The parameter located in this region, fc, 
is known as the cutoff frequency. 

Figure 11. Low-pass filter terminology and spedfications. The crosshatched regions represent out-of- 
specification areas. An example frequency response curve that meets specifications is shown. 
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The low pass filter chosen was a circuit that can be built using a 3rd-order Butterworth filter. The 
specifications are as follows: 

fp = 925 Hz Kp = 3.0103 dB 
fs = 3200 H z  If, = 22 dl3 

Such a filter design can be derived using a ladder structure and component values found in published 
tables. The GA was allowed to use capacitors and inductors during evolution, resulting in an LC low-pass 
filter. The evolved circuit that meets these specifications is shown in Fig. 12 and its frequency response is 
shown in Fig. 13. It was found in generation 22 of a GA run that lasted approximately four hours using six 
Sun Ultra workstations working in parallel. 

~ "1 "P 
1 I 

i 
$ %  
! 

1 
I 

Figure 12. Evolved 3rd-order Butterworth low-pass filter (units are ohms, farads, and henries). 

Figure 13. Frequency response curve for evolved 3rd-order Butterworth low-pass filter. Attenuation specifi- 
cations are also shown. The frequency axis is a scaled logarithmically. 

VI. EOS Satellite Scheduling 

We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing 
satellites. The constraints are complex and the bottlenecks are not well understood, a condition where 
evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only 
that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we 
have developed a representative set of problems, produced optimization software (in Java) to  solve them, and 
run experiments comparing techniques. We've obtained initial results of a comparison of several evolutionary 
and other optimization techniques - namely the genetic algorithm, simulated annealing, squeaky wheel 
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optimization, and stochastic hill climbing. We’ve ako compared separate satellite vs. int,egrated scheduling 
of a two satellite const,ellation. While the results are not definitive, tests to date suggest that simulated 
annealing is the best search technique and integrated scheduling is superior. This work is described in5 as 
well as a companion paper ”Scheduling Earth Observing Satellites with Evolutionary Algorithms“ in these 
proceedings. 

VII. Beowulf Cluster 

-4 crucial component to most research in Evolvable Systems is the computational hardware. For the work 
reported above, our group uses an 80-cpu Beowulf Cluster as shorn in Figure 14. The cluster uses a mixture 
of Intel and AMD cpus, standard office ethernet, a d  does not include disks at each node. 

Figure  14. Photograph of the Beowulf cluster.  

VIII. Discusssion 

We have surveyed some of the research and development from the Evolvable Systems Group at KASX 
Ames Research Center. While most applications a:e currently in the proof-of-concept stage, we are investi- 
gating a mission insertion opportunity on one of our antenna designs. If successiW: this would be one of the 
first fielded evolvable hardware applications. 
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